Two new diterpenoids from *Isodon japonica* Suping Bai, Xiaoling Jin and Li Yang*

National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

Two new diterpenoids, maoyecrystal J (1) and maoyecrystal K (2), together with five known diterpenoids, effusanin A (3), isodonal (4), isodonaiol (5), rabdosinate (6) and rabdosin B (7) were isolated from *Isodon japonica* (Burman f.) Hara. The structures of the two new compounds were assigned 1α , 6β , 7β -trihydroxy- 7α ,20-epoxy-*ent*-kaur-11(12),16(17)-dien-15-one (1) and 6β , 11α -dihydroxy- 16β -methoxymethyl-6,20-epoxy-6,7-*seco-ent*-kaur-15-one- 1α , 7-olide (2) on the basis of HR–MS, ¹H, ¹³C and 2D NMR spectroscopic methods.

Keywords: diterpenoids, Isodon japonica

Isodon japonica (Burman f.) Hara (Labiatae) has been used as folk medicines in China and Japan as an antibacterial, antiinflammatory, stomachic and anthelmintic for long time.¹ Phytochemical studies on this plant collected in different regions have led to identification of over thirty entkauranoids.²⁻¹³ In our effort to find biologically active components from Chinese medicinal plants¹⁴ we found that *I*. japonica (Burman f.) Hara collected in Jiyuan prefecture of Henna province, China, afforded two new diterpenoids, i.e., 1α,6β,7β-trihydroxy-7α,20-epoxy-ent-kaur-11(12),16(17)dien-15-one (1), (maoyecrystal J), and 6β ,11 α -dihydroxy-16β-methoxymethyl-6,20-epoxy-6,7-seco-ent-kaur-15-one- 1α ,7-olide (2), (maoyecrystal K), together with five known diterpenoids, *i.e.*, effusanin A (3), isodonal (4), isodonoiol (5), rabdosinate (6) and rabdosin B (7). We report the isolation and structure elucidation of the two new compounds and their total ¹H and ¹³C NMR chemical shifts assignments (Fig 1).

The dried and powdered leaves of *I. japonica*, which were collected from Jiyuan prefecture of Henan province, China and identified as *Isodon japonica* (Burman f.) Hara by Professor Changshan Zhu, Henan Agriculture University, China, were extracted with 70% Me₂CO followed by silica gel column chromatographic separation to give compounds **1–7**.

Compound 1 was obtained from the MeOH eluant as colourless plates. The HR-ESI-MS spectrum exhibited an M+Na ion peak at m/z 369.1665, corresponding to a molecular formula of $C_{20}H_{26}O_5$ (calcd. for M+Na 369.1672). Its ¹H, ¹³C and DEPT NMR spectra coupled with the IR spectrum revealed the presence of an exocyclic double bond conjugated with a carbonyl group [IR: 1630 and 1707 cm⁻¹; $\delta_{\rm H}$ 5.92 and 5.21 (each 1H, s); δ_{C} 114.4, 150.6 and 209.3], an endocyclic double bond [IR: 1593 cm⁻¹; $\delta_{\rm H}$ 6.42 (1H, dd, J= 9.2, 2.8 Hz) and 6.25 (1H, ddd, *J*= 9.2, 9.2, 2.8 Hz); δ_C 128.2 and 132.9], two methines containing oxygen [$\delta_{\rm H}$ 4.27 (1H, dd, J= 8.4, 4.0 Hz) and 3.88 (1H, dd, J = 8.0, 6.8 Hz); $\delta_{\rm C}$ 74.4 and 71.9], a methylene containing an oxygen [δ_H 4.61 and 4.35 (each 1H, AB, d, J = 10.1 Hz); δ_{C} 64.9 (t)], two methyls [δ_{H} 1.15 (3H, s) and 1.01 (3H, s); δ_C 32.5 and 21.1], three methylenes (δ_C 39.2, 32.9 and 29.7), three methines (δ_{C} 63.4, 52.5 and 37.7), and four quarternary carbons including a ketalic carbon (δ_C 60.8, 43.9, 33.9, and 97.4). The signals at $\delta_{\rm H}$ 9.04 (1H, br), 6.77 (1H, d, J = 8.4 Hz) and 6.14 (1H, br) in the ¹H NMR spectrum and the absorption at 3265 cm⁻¹ in the IR spectrum suggest the existence of three hydroxyl groups. With reference to the known structures of diterpenoids from the Isodon *japonica*, 2-13,15 this suggested that compound **1** might be an epoxy-ent-kaurane diterpenoid with three hydroxyl groups and an endocyclic double bond. Careful comparison of the ¹³C NMR data of **1** with those of effusanin A $(3)^{15}$ revealed a close similarity between the two molecules except that the C-11 and C-12 methylenes ($\delta_{\rm C}$ 20.2 and 30.1) in **3** were replaced by

Fig. 1 Molecular structures.

the endocyclic double bond ($\delta_{\rm C}$ 128.2 and 132.9) in **1**. The location of this double bond can be confirmed by the clear HMBC correlations of H-11 with C-8, C-9, C-13, and H-12 with C-9, C-13. The location of the 1-OH was confirmed by the HMBC correlations of H-2 α , H-2 β and H-20b with C-1 $(\delta_{\rm C}$ 71.9), and that of H-1 with C-20. The location of the 6-OH was confirmed by the HMBC correlations of H-6/C-4, H-6/C-7, H-6/C-8, along with the H-H COSY correlation of 6β -OH with H-6a. The relative configurations of the 1-OH and 6-OH are deduced to be α - and β -oriented, respectively, from their coupling constants ($\delta_{\rm H}$ 3.88, 1H, dd, J= 8.0, 6.8 Hz for H-1 β , and $\delta_{\rm H}$ 4.27, 1H, dd, J= 8.4, 4.0 Hz for H-6 α), and confirmed by the NOESY correlations as shown in Fig. 2. Therefore, the structure of 1 was assigned as $1\alpha, 6\beta, 7\beta$ -trihydroxy- $7\alpha, 20$ epoxy-ent-kaur-11(12),16(17)-dien-15-one, and named maoyecrystal J. The total ¹H and ¹³C NMR chemical shift assignments together with the HMBC correlations of 1 are listed in Table 1. Also listed are ¹³C chemical shifts of **3** for comparison.

^{*} Correspondence. E-mail: yangl@lzu.edu.cn

Table 1 ¹H (400 MHz) and ¹³C (100 MHz) NMR chemical shifts of 1 and 3 and HMBC correlations of 1^a

No.	δ _C		δ _H (<i>J</i> in Hz)	HMBC (H→C)	
	1	3	1	1	
1	71.9, d	73.3, d	3.88 (dd, 8.0, 6.8, H-1β) 6.14 (br. s, OH-1α)	H-2α, H-2β, H-20b	
2	29.7, t	30.4, t	1.88 (m, H-2α, H-2β)	Η-3α, Η-3β	
3	39.2, t	39.1, t	1.34 (m, H-3α), 1.40 (m, H-3β)	H-2α, H-2β, Me-18, Me-19	
4	33.9, s	34.0, s		H-2α, H-2β, H-5β, H-6α, Me-18, Me-19	
5	63.4, d	61.3, d	1.57 (d, 4.0, H-5β)	H-3β, H-9β, Me-18, Me-19, H-20a	
6	74.4, d	74.8, d	4.27 (dd, 8.4, 4.0, H-6 α)	Η-5β	
7	97.4. s	95.8. s	9.04 (br. s. OH-78)	Η-6α, Η-14β, Η-20b	
8	60.8, s	60.5, s		Η-6α, Η-9β, Η-11, Η-13α, Η-14α, Η-14β	
9	52.5, d	52.0, d	2.41 (m, H-9β)	H-5β, H-11, H-12, H-14α, H-14β, H-20a, H-20b	
10	43.9, s	41.7, s		H-2α, H-2β, H-5β, H-9β, H-20a, H-20b	
11	128.2, d	20.2, t	6.42 (dd, 9.2, 2.8, H-11)	Η-9β, Η-13α	
12	132.9, d	30.1, t	6.25 (ddd, 9.2, 9.2, 2.8, H-12)	Η-9β, Η-13α, Η-14β	
13	37.7, d	35.1, d	3.28 (m, H-13α)	H-11, H-12, H-14α, H-14β, H-17a, H-17b	
14	32.9, t	26.4, t	2.44 (d, 11.0, H-14α)	Η-9β	
			2.86 (dd, 11.0, 4.1, H-14β)		
15	209.3, s	210.9, s		H-9β, H-13α, H-14α, H-17a, H-17b	
16	150.6, s	154.3, s		H-14α, H-17a	
17	114.4, t	115.7, t	5.92, 5.21 (each 1 H, s, H-17a, H-17b)		
18	32.5, q	33.2, q	1.15 (s, Me-18)	H-3α, H-3β, H-5β, Me-19	
19	21.1, q	22.1, q	1.01 (s, Me-19)	H-3α, H-3β, H-5β, Me-18	
20	64.9, t	63.7, t	4.61, 4.35 (each 1 H, AB, d, 10.1, H-20a, H-20b)	Η-1β, Η-5β, Η-9β	

^aDetermined in C₅D₅N. ¹³C NMR multiplicities were established by DEPT.

Fig. 2 Significant NOESY correlations of 1 and 2.

Compound 2 was obtained from the MeOH eluant as colourless needles. The HR-ESI-MS spectrum exhibited an M+Na ion peak at m/z 417.1879, corresponding to a molecular formula of $C_{21}H_{30}O_7$ (calcd. for M+Na 417.1884). Its ¹H, ¹³C and DEPT NMR spectra coupled with the IR spectrum revealed the presence of a carbonyl group [IR: 1760 cm⁻¹; $\delta_{\rm C}$ 212.5], a δ -lactone [IR: 1716 cm⁻¹; $\delta_{\rm H}$ 4.88 (1H, dd, J = 10.5, 7.2 Hz); $\delta_{\rm C}$ 76.7 and 171.0], a hemiacetal group [$\delta_{\rm H}$ 5.72 (1H, s) and 9.04 (1H, br); $\delta_{\rm C}$ 102.1], another hydroxyl group [IR: 3306 cm⁻¹; $\delta_{\rm H}$ 4.50 (1H, m); $\delta_{\rm C}$ 63.6], two methylenes carrying oxygen [$\delta_{\rm H}$ 4.38, 4.26 (each 1H, AB, d, J = 9.6 Hz) and 3.57, 3.48 (each 1H, AB, dd, J= 9.2, 4.8 Hz); $\delta_{\rm C}$ 73.6 and 71.3], a methoxy group [δ_H 3.14 (3H, s); δ_C 58.6], two methyls [$\delta_{\rm H}$ 0.95 (6H, s); $\delta_{\rm C}$ 32.9 and 23.1], four methylenes $(\delta_{C} 41.6, 37.3, 33.8, and 24.0)$, four methines $(\delta_{C} 58.2, 53.9,$ 52.3, and 31.7), and three quarternary carbons ($\delta_{\rm C}$ 57.0, 51.0, and 31.6). With reference to the known structures of diterpenoids from the genus Isodon, this suggested that compound 2 might be an enmein type diterpenoid with two hydroxyl groups and one methoxy group. Comparison of the 13 C chemical shifts of 2 with those of taibaijaponicain A (8) 13 indicated that the two molecules were almost identical except for the notable down-field shift of C-12 (δ_C 41.6 and 32.6 for 2 and 8 respectively) and an appreciable up-field shift of C-14 (δ_C 33.8 and 35.0 for 2 and 8 respectively) in 2 in comparison

with those in **8**. These facts suggest that the 16-CH₂OCH₃ of **2** was β -oriented, due to the absence of γ -gauche interaction of the 16 α -CH₂OCH₃ with H-12 α and the presence of γ -gauche interaction between 16 β -CH₂OCH₃ and H-14 α . This configuration was supported by the NOESY correlations of H-16 α with H-12 α , and H-17a with H-13 β , and H-17b with H-14 α (see Fig. 2). Therefore, compound **2** was assigned as the 16-epimer of **8**, namely, 6 β ,11 α -dihydroxy-16 β -methoxymethyl-6,7-*seco*-6,20-epoxy-*ent*-kaur-15-one-1 α ,7-olide and named as maoyecrystal K. The structure and configuration of the molecule were confirmed by HMBC and NOESY as shown in Table 2 and Fig. 2 respectively. The complete ¹H and ¹³C NMR chemical shift assignments together with HMBC correlations of **8** for comparison.

Compounds 3–7 were identified by comparison of their ¹H and ¹³C NMR, MS and IR spectroscopic data with those reported in literatures as effusanin A (3),¹⁵ isodonal (4),¹⁶ isodonoiol (5),^{4,8} rabdosinate (6)⁸ and rabdosin B (7).⁷

Experimental

Melting points were determined with a Kofler melting point apparatus and uncorrected. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. UV spectra were recorded on a Shimadzu UV-260 instrument. IR spectra were taken on a Nicolet 170 SX FT-IR spectrometer. ¹H, ¹³C and 2D NMR spectra were recorded

Table 2	¹ H (400 MHz) and	¹³ C (100 MHz) NMR	chemical shifts of 2 and	d 8 and HMBC correlations of 2 ª
---------	------------------------------	-------------------------------	--------------------------	--

No.	δ _C		δ _H (<i>J</i> in Hz)	HMBC (H→C)
	2	8	2	2
1	76.7, d	77.3, d	4.88 (dd, 10.5, 7.2, H-1β)	Η-9α
2	24.0, t	24.2, t	1.86 (m, H-2α, H-2β)	
3	37.3, t	37.4, t	1.31 (m, H-3α, H-3β)	Me-18, Me-19
4	31.6, s	32.1, s		H-5β, Me-18, Me-19
5	53.9, d	54.3,d	3.25 (s, H-5β)	Me-18, Me-19, H-20b
6	102.1, d	102.6,d	5.72 (s, H-6α)	H-5β, H-20a
			9.04 (br. s, OH-6β)	
7	171.0, s	171.2, s		Η-14α
8	57.0, s	57.7, s		Η-9α
9	52.3, d	53.1, d	2.88 (d, 11.2, H-9α)	H-5β, H-14α, H-20a, H-20b
10	51.0, s	50.9, s		H-5β, H-9α, H-20a, H-20b
11	63.6, d	63.3, d	4.50 (m, H-11β)	$H-9\alpha$, $H-12\alpha$
12	41.6, t	32.6, t	1.55 (dd, 14.0, 9.6, H-12α)	Η-14α
			2.94 (m, H-12β)	
13	31.7, d	31.3, d	2.60 (m, H-13β)	H-17a, H-17b
14	33.8, t	35.0, t	2.32 (dd, 12.0, 4.4, H-14α)	Η-9α
	,	, -	2.68 (d, 12.0, H-14B)	
15	212.5 <i>,</i> s	212.3 <i>.</i> s		Η-9α, Η-13β, Η-14β, Η-16α, Η-17a, Η-17b
16	58.2. d	58.8, d	2.57 (m, H-16α)	H-12B, H-17a, H-17b
17	71.3, t	69.3, t	3.57, 3.48 (each 1 H, AB, dd, 9.2, 4.8, H-17a, H-17b)	-OCH ₃
18	32.9, a	33.1 <i>.</i> a	0.95 (s, Me-18)	H-5β, Me-19
19	23.1. a	23.5, a	0.95 (s, Me-19)	H-56, Me-18
20	73.6 <i>.</i> t	73.9 <i>.</i> t	4.38, 4.26 (each 1 H, AB, d, 9.6, H-20a, H-20b)	H-5 β , H-9 α
OCH ₃	58.6, q	56.4, q	3.14 (s)	H-17a, H-17b

^aDetermined in C₅D₅N (for 2) and acetone-d₆ (for 8). ¹³C NMR multiplicities were established by DEPT.

on a Bruker AM-400 NMR spectrometer with TMS as internal standard. HR-ESI-MS was obtained on a Bruker APEX II FT-MS spectrometer.

Extraction and isolation procedures

The dried and crushed leaves of Isodon japonica (7.5kg) were extracted three times with Me₂CO/H₂O (7:3 v/v) at room temperature for 5 days. The extract was filtered and the solvent was removed under reduced pressure, and the residue was partitioned between H2O and AcOEt. The AcOEt fraction gave 131 g of residue after removing the solvent. This residue was separated by silica gel (200-300 mesh) column chromatography with gradient elution of CHCl3/MeOH (1:0 to 0:1) to give seven fractions which were subjected repeated chromatography (silica gel, gradient elution with CHCl₃/Me₂CO), giving pure maoyecrystal J (1, 4 mg), maoyecrystal K (2, 2 mg), effusanin A (3, 12 mg), isodonal (4, 60 mg), isodonoiol (5, 600 mg), rabdosinate (6, 8 mg) and rabdosin B (7, 30 mg). The structures of the two new compounds 1 and 2 were identified as mentioned above. The structures of compounds 3-7 were characterised by comparing their m.p., IR, MS, ¹H and ¹³C NMR chemical shifts with those reported in literatures.4,7-8,15-16

Maoyecrystal K (2): Colourless needles, m.p. 200–202 °C, $[\alpha]_D^{19}$ –210°(*c* 0.18, C₅H₅N). IR (KBr) ν_{max}/cm⁻¹: 3306, 2930, 2892, 1760, 1716, 1456, 1253, 1110, 1050, 981, 906, 731. HR-ESI-MS: Found: 417.1879, Calcd. for C₂₁H₃₀O₇ + Na: 417.1884. For ¹H and ¹³C NMR data see Table 2.

We are grateful to the National Natural Science Foundation of China for financial support.

Received 18 April 2004; accepted 10 May 2004 Paper 04/2484

References

- 1 H.D. Sun, Y.L. Xu and B. Jiang, *Diterpenoids from Isodon Species*, Science Press, Beijing, 2001, pp. 2-3.
- 2 E. Fujita, T. Fujita, M. Taoka, H. Katayama and M. Shibuya, *Tetrahedron Lett.*, 1970, 421.
- 3 E. Fujita, M. Taoka, Y. Nagao and T. Fujita, J. Chem. Soc. Perkin Trans. I, 1973,1760.
- 4 Q.Z. Zhao, J.H. Chao, H.Q. Wang and H.D. Sun, *Chin. Tradit. Herbal Drugs*, 1984, **15**, 49.
- 5 I. Kubo, T. Kamikawa and T. Kubota, Tetrahedron, 1974, 30, 615.
- 6 Q.B. Han, J.X. Zhang, Y.H. Shen and H.D. Sun, *Chin. J. Nat. Med.*, 2003, **1**, 16.
- 7 J.C. Li, C.J. Liu, X.Z. An, M.T. Wang, T.Z. Zhao, S.Z. Yu, G.S. Zhao and R.F. Chen, *Acta Pharmaceut. Sinica*, 1982, 17, 682.
- 8 M.T. Wang, T.Z. Zhao, J.C. Li, C.J. Liu and X.Z. An, Acta Chim. Sinica, 1987, 45, 871.
- 9 C.J. Liu, J.C. Li, X.Z. An, R.M. Cheng, F.Z. Shen, Y.L. Xu and D.Z. Wang, *Acta Pharmaceut. Sinica*, 1982, **17** (10), 750.
- 10 F.M. Xu, H.P. Hu and Z.Q. Wang, Chin. J. Chin. Med., 1996, 21, 678.
- 11 J.X. Zang, Q.B. Han, Q.S. Zhao, S.H. Li and H.D. Su, *Chin. Chem. Lett.*, 2002, **13**, 1075.
- 12 J.X. Zang, Q.B. Han, A.H. Zhao and H.D. Sun, *Fitoterapia*, 2003,**74**, 435.
- 13 B.L. Li and X.H. Tian, Phytochem., 2001, 58, 543.
- 14 (a) J.Q. Dai, C.Y. Zhao, Q. Zhang, Z.L. Liu, R.L. Zheng and L. Yang, *Phytochem.*, 2001, **58**, 1107; (b) J.Q. Dai, Z.L. Liu and L. Yang, *Phytochem.*, 2002, **59**, 537; (c) Y. Wang, Q. Wei, L. Yang and L.-Z. Liu, *J. Chem. Res.* (S), 2003, 676; (d) J. Ma, X. Jin, L. Yang and Z.L. Liu, *Phytochem.*, 2004, **65**, 1137.
- 15 T. Fujita, Y. Takeda and T. Shingu, A. Ueno, *Chem. Lett.*, 1980, 1635.
- 16 Y. Takeda, T. Fujita, H.D. Sun, Y. Minami, M. Ochi and C.C. Chen, *Chem. Pharm. Bull.*, 1990, **38**, 1877.